Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.21.481223

ABSTRACT

The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1/{beta}. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.


Subject(s)
Coronavirus Infections , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.22.436522

ABSTRACT

We identify the prolyl-tRNA synthetase (PRS) inhibitor halofuginone, a compound in clinical trials for anti-fibrotic and anti-inflammatory applications, as a potent inhibitor of SARS-CoV-2 infection and replication. The interaction of SARS-CoV-2 spike protein with cell surface heparan sulfate (HS) promotes viral entry. We find that halofuginone reduces HS biosynthesis, thereby reducing spike protein binding, SARS-CoV-2 pseudotyped virus, and authentic SARS-CoV-2 infection. Halofuginone also potently suppresses SARS-CoV-2 replication post-entry. Utilizing analogues of halofuginone and small molecule inhibitors of the PRS, we establish that inhibition of HS presentation and viral replication is dependent on proline tRNA synthesis opposed to PRS activation of the integrated stress response (ISR). Moreover, we provide evidence that these effects are mediated by the depletion of proline tRNAs. In line with this, we find that SARS-CoV-2 polyproteins, as well as several HS proteoglycans, are particularly proline-rich, which may make them vulnerable to halofuginone translational suppression. Halofuginone is orally bioavailable, has been evaluated in a phase I clinical trial in humans and distributes to SARS-CoV-2 target organs, including the lung, making it a promising clinical trial candidate for the treatment of COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL